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Solution of the Multidimensional Compressible 

Navier-Stokes Equations by a Generalized 

Implicit Method 

SUMMARY 

In an effort to exploit the favorable stability properties of implicit methods 
and thereby increase computational efficiency by taking large time steps, an implicit 
finite-difference method for the multidimensional Navier-Stokes equations is pre
sented. The method consists of a generalized implicit scheme which has been linear
ized by Taylor expansion about the solution at the known time level to produce a 
set of coupled linear difference equations which are valid for a given time step. 
To solve these difference equations, the Douglas-Gunn procedure for generating 
alternating-direction implicit (ADI) schemes as perturbations of fundamental impli
cit difference schemes is employed. The resulting sequence of narrow block-banded 
systems can be solved efficiently by standard block-elimination methods. The method 
is a one-step method, as opposed to a predictor-corrector method, and requires no 
iteration to compute the solution for a single time step. The use of both second 
and fourth order spatial differencing is discussed. Test calculations are presented 
for a three-dimensional application to subsonic flow in a straight duct with rec
tangular cross section. Stability is demonstrated for time steps which are orders 
of magnitude larger than the maximum allowable time step for conditionally stable 
methods as determined by the well known CFL condition. The computational effort per 
time step is discussed and is very approximately only twice that of most explicit 
methods. The accuracy of computed solutions is examined by mesh refinement and 
comparison with other analytical and experimental results. Finally, some test cal
culations for turbulent flow were made using a simple turbulence model consisting 
of an eddy vis~osity and specified mixing length. The results of these calculations 
are discussed. 
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INTRODUcrION 

One of the major obstacles to the routine numerical solution of the 
multidimensional compressible Navier-Stokes e~uations is the large amount of computer 
time generally re~uired, and conse~uently, efficient computational methods are highly 
desirable in this instance. Most previous methods for solving the compressible 
Navier-Stokes e~uations have been: based on 'explicit difference schemes for the 
unsteady form of the governing e~uations and are subject to one or more stability 
restrictions on the size of the time step relative to the spatial mesh size. These 
stability limits usually correspond to the well known Courant-Friedrichs-Lewy (CFL) 
condition and, in some schemes, to an additional stability ,condition arising from 
viscous terms. In one dimension, the CFL condition is At ~ 6x/(lul + c), and the 
viscous stability condition is At ~ (Ax)2/2v, where At is the time step, Ax is the 
mesh size, u is velocity, c is the speed of sound, and v is kinematic viscosity. 
These stability restrictions can lower computational efficiency by imposing a smaller 
time step than would otherwise be desirable. Thus, a key disadvantage of conditionally 
stable methods is that the maximum time step is fixed by the spatial mesh size 
rather than the physical time dependence or the desired temporal accuracy. In con
trast to most explicit methods, implicit methods tend to be stable for large time 
steps and hence offer the prospect of substantial increases in computational 
efficiency, provided of course that large time steps are acceptable for the physical 
problem of interest and that the computational effort per time step is competitive 
with that of explicit methods. In an effort to exploit these potentially favorable 
stability properties, an efficient implicit method based on alternating-direction 
differencing techni~ues was developed and is presented herein. 

Effect of Stability Conditions 

The potential of implicit methods for increased overall efficiency arises 
whenever the CFL, viscous, orother stability conditions become restrictive in the 
sense that the rate of change of physical processes permits a larger step than does 
the numerical scheme. Since the severity of these stability conditions varies from 
problem to problem and with the choice of grid size, no single factor can be ~uoted 
for overall relative efficiency. Nevertheless, certain guidelines can be established 
from a consideration of the effect various factors have on the stability conditions. 
One of the adverse conse~uences of stability restrictions becomes apparent when a 
coarse-mesh solution is recomputed with a finer spatial mesh to obtain greater 
spatial accuracy. Assumirg the maximum allowable time-step is taken with a condi
tionally stable scheme, the time-step must be smaller with the finer mesh even 
though the physical time dependence is exactly the same. In these same circumstances, 
implicit methods not subject to stability restrictions can take the same time step 
with both spatial meshes, and conse~uently, the computational effort increases only 
linearly with the number of spatial grid points, as opposed to a ~uadratic increase 
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for a CF1-limited calculation and a cubic increase for a viscous-limited calculation. 
For lower Mach number flows, the CF1 condition eventually becomes restrictive regard
less of mesh spacing, and thus stable implicit methods are well suited for problems 
in the low Mach number regime. For all Mach numbers, both the CFL and viscous 
stability conditions eventually become restrictive for sufficiently small mesh 
spacing. Implicit methods thus become increasingly attractive when high spatial 
resolution is necessary and especially when locally refined meshes are used, since 
the stability limit is usually governed by the smallest mesh spacing in the field. 
This latter situation is common when more than one length scale is present, as 
is the case for flows which are largely inviscid but have thin boundary layers 
requiring a locally refined mesh. Similar statements hold for (time-averaged) tur
bulent flows with viscous sublayers. 

Steady and Unsteady Applications 

Although the present method solves the unsteady equations of motion, the most 
dramatic gains in efficiency are likely to result when computing steady solutions 
as the asymptotic limit for large time of an unsteady solution. In this instance, 
there is no need to follow the transient accurately, and large temporal truncation 
errors can therefore be tolerated and are even desirable in exchange for a reduction 
in the total number of time steps required to reach steady conditions. Furthermore, 
various convergence acceleration techniques which take advantage of stability can 
be employed. For unsteady problems, the need for transient accuracy limits the 
extent to which the time step can be increased as a result of improved stability, 
and the relevant question then becomes how the stability limit compares with the 
time step necessary to follow the transient accurately. This question is difficult 
to answer with any generality since stability conditions only relate the time step 
to the spatial mesh size, and they do not directly relate computational time step 
to the relevant physical time scales of the overall problem. 

Although the use of implicit schemes for diffusive terms is generally accepted, 
it is less clear whether implicit schemes for convective terms have sufficient 
transient accuracy for unsteady problems (cf. Orszag & Israeli, Ref. 1). Aside 
from the usual order-of-accuracy error estimates, which are relevant only for 
sufficiently small step size, indications of the accuracy of a scheme for a given 
finite step are valuable. Thus, various authors [e.g., Fromm (Ref. 2); Morton 
(Ref. 3)J have considered the damping and dispersion characteristics of different 
difference schemes in approximating pure-convection phenomena. For a model problem, 
Morton (Ref. 3) has pointed out that while the Crank-Nicolson implicit scheme intro
duces no damping error, certain explicit schemes perform significantly better in terms 
of phase error per time step as a function of wavelength than does the Crank
Nicolson scheme. Furthermore, it can be shown for this model problem that the phase 
error of the Crank-Nicolson scheme becomes progressively worse as the explicit 
stability limit is exceeded, even though the scheme itself remains stable. These 
findings suggest that implicit schemes for convective terms may not have sufficient 
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transient accuracy for unsteady problems unless they also satisfy the explicit 
stability conditions. This argmnent no doubt has validity in numerous applications 
wherein the physical time scale of interest is the same as the time scale governing 
stability, However, the pure-convection model problem does not explore the effects 
of multiple time scales, boundary conditions, or local regions of high resolution, 
which are often important in practical applications. Thus, for example, low Mach 
number unsteady flows can be envisaged wherein the velocity field is insensitive to 
the detailed behavior of sound waves. Similarly, the unsteadiness may enter 
through periodic boundary conditions having a time scale longer than that governing 
stability. Further study in this area would be helpful in assessing the value of 
implicit schemes in unsteady applications. 

The Present Method 

Summa~ 

The present method can be briefly outlined as follows: the governing equations 
are replaced by an implicit time difference approximation, optionally a backward 
difference or Crank-Nicolson scheme. Terms involving nonlinearities at the implicit 
tL~e level are linearized by Taylor expansion about the solution at the known time 
level. and spatial difference approximations are introduced. The result is a system 
of multidimensional coupled (but linear) difference equations for the dependent 
variables at the unknown or implicit time level. To solve these difference 
equations, the Douglas-Gunn (Ref. 4) procedure for generating alternating-direction 
implicit (ADI) schemes as perturbations of fundamental implicit difference schemes 
is introduced. This technique leads to systems of coupled linear difference equa
tions having narrow block-banded matrix structures which can be solved efficiently 
by standard block-elimination methods. 

The method centers around the use of a formal linearization technique adapted 
for the integration of initial-value problems. The linearization technique, which 
of necessity requires an implicit solution procedure, permits the solution of coupled 
nonlinear equations in one space dimension (to the requisite degree of accuracy) 
by a one-step noniterative scheme. Since no iteration is required to compute the 
solution for a single time step, and since only moderate effort is required for 
solution of the jmplicit difference equations, the method is computationally 
efficient; this efficiency is retained for multidimensional problems by using ADI 
techniques. The method is also economical in terms of storage, in its present form 
requiring only two time-levels of storage for each dependent variable. Furthermore, 
the ADI technique reduces multidimensional problems to sequences 9f calculations 
which are one-dimensional in the sense that easily-solved narrow block-banded 
matrices associated with one-dimensional rows of grid points are produced. Con
sequently, only these one-dimensional problems require rapid-access storage at any 
given stage of the solution procedure, and the remaining flow variables can be saved 
on auxiliary storage devices if desired. 
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Applicability 

Although present attention is focused on the compressible Navier-Stokes 
equations, the numerical method employed is quite general and is formallY derived 
for systems of governing equations which have the following for.m: 

(1) 

where ¢ is a column vector containing ~ dependent variables, H and S are column 
vector functions of ¢, and ~ is a column vector whose elements are spatial differen
tial operators which may be multidimensional. The generality of Eq. (1) allows the 
method to be developed concisely and per.mits various extensions and modifications 
(e.g., noncartesian coordinate systems, turbulence models) to be made more or less 
routinely. It should be emphasized, however, that the Jacobian OH/2l¢ must usually 
be nonsingular if the ADI techniques as applied to Eq. (1) are to be valid. A 
necessary condition is that each dependent variable appear in one. or more of the 
governing equations as a time derivative. An exception would occur if for instance, 
a variable having no time derivative also appeared in only one equation, so that 
this equation could be decoupled from the remaining equations and solved ~ posteriori 
by an alternate method. As a consequence, the present method is not directly appli
cable to the incompressible Navier-Stokes equations except in one-dimension, 
where ADI techniques are unnecessary. For example, the velocity-pressure for.m of 
the incompressible equations has no time derivative of pressure, whereas the 
vorticity-stream-function for.m has no time derivative of stream function. For com
puting steady solutions, however, the addition of suitable "artificial" time deri
vatives to the incompressible equations, as was done in Chorin's (Ref. 5) artificial 
compressibility method, would per.mit the application of the present method. Alter
natively, a low Mach number solution of the compressible equations can be computed. 
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GOVERNING EQUATIONS 

The numerical method is presented for flow in three space dimensions; two
dimensional problems can be treated as a special case. For simplicity, it is 
assumed that the fluid is a perfect gas with zero bulk viscosity coefficient and 
constant molecular viscosity, thermal conductivity, and specific heat. The 
governing equations are nondimensionalized by normalizing dimensional variables 
with the following reference quantities: distance, Lr; velocity, Ur; density, 
Pr' temperature; Tr; time, Lr/Ur ; enthalpy ur

2 ; and pressure, PrUr2/g, where g is 
the gravitational constant. This normalization leads to the following nondimen
sional parameters: Mach number, M; Reynolds number, Re; Prandtl number, Pr; and 
specific heat ratio, y. These parameters are defined by 

y = C p Icv (2a-d) 

where ~ is the molecular viscosity, k is thermal conductivity, and cp and Cv are 
the specific heats at constant pressure and volume. The reference speed of sound, 
c, is defined by c2 = ygRTr , where R is the gas constant. 

With the exception of the energy equation, the equations are written in the 
so-called conservation form. The foregoing assumptions are convenient but not 
essential; the treatment of alternate forms of the equations, arbitrary equation 
of state, and variable fluid properties is relatively straightforward. With the 
stated assumptions, the Navier-Stokes equations can be written for Cartesian 
coordinates (x,y,z) as follows: the continuity equation is 

aplot = o(-pu)/ox + o(-pv)/oy + o(-pw)/oz (3a) 

The momentum equations are represented by 

o(p'lJ)/ot =o(-puu)/ox + o(-pvu)/oy + o(-pwu)/oz -op/o'X +1= (3b) 

nle energy equation is 

opT = _0_ (-PUT + Y -..-.eL) + _0_ (-PvT + 
ot ox RePr ox oy 

.....L (-PWT + OZ 
Y 

Re Pr 
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In Eqs. (3).. u, v, and ware the x, yand z components of the velocity vector, U; 
p is density; T is temperature; p is pressure; t is time, and V is the gradient 
operator. The symbols ~, x denote u, x; v, y; w, z, respectively, for the x, y, 
and z momentum equations. 

The force due to viscous stress, F, is given by 

'" I [2..... 2 2..... 2 2"" 2 I ] 
F:: ReO u lox + a u lay + a u 1 a z + 3 a ( \l . U) lax (4) 

The pressure can be eliminated as a dependent variable by means of the equation 
of state for a perfect gas, 

(6) 

The continuity, momentum and energy equations thus constitute a system of five 
equations in the dependent variables p, u, v, w, and T. The definition of total 
enthalpy E is 

where q2 =: u2 + v2 + w2 • In numerous problems of interest, it can be assumed that 
the total enthalpy is a constant Eo provided there is no heat addition. This 
assumption is reasonable for inviscid flow regions with or without shocks and for 
bOlmdary layers on adiabatic walls provided the Prand tl number is unity. In this 
CirClUtlstance, Eqs. (6-7) can be combined to produce an adiabatic equation of state, 

P =p(E 0 _q2 12) (Y-I) IY (8) 

If pressure is eliminated in the momentum equations by means of (8), then solution 
of the energy equation (3c) is unnecessary, and a significant reduction in compu
tational effort is effected. The temperature field is then determined ~ posteriori 
from Eq. (7). This simplification, although convenient and available as an option, 
was not used for any of the calculations presented here for laminar flow. 
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NUMERICAL METHOD 

Previous Work 

Although several methods based on implicit schemes have been developed for 
incompressible flows (e.g., Pearson, Ref. 6; Chorin, Ref. 7), most previous methods 
for the compressible Navier-Stokes equations have employed explicit schemes. 
Nevertheless, a semi-implicit method has been developed by Harlow and Amsden (Ref. 
8) for use over the entire spectrum of Mach numbers from incompressible to hyper
sonic. However, the Harlow-Amsden method treats viscous terms explicitly and, 
unlike alternating-direction methods, requires the solution of multidimensional 
implicit difference equations, which tends to be time consuming. In an independent 
investigation, Baum and Ndefo (Ref. 9) developed a two-dimensional implicit method 
which is patterned after the original Peaceman-Rachford (Ref. 10) ADI technique. 
Perhaps the most significant difference between the Baum-Ndefo and present 
methods is that the Baum-Ndefo method employs iterative techniques, solving non
linear difference equations as a sequence of linear equation, whereas in the pre
sent method, the difference equations are linearized about the solution at the pre
vious time step and solved without iteration. In principle, the solution of non
linear difference equations is of course attractive, as this removes any limitations 
which might arise from the linearization process. It is, however, a time-consuming 
process to solve the nonlinear difference equations, and as far as temporal accuracy 
is concerned, the additional computational effort required by the solution of 
nonlinear difference equations might be as well spent by reducing the time step 
and proceeding with a satisfactory linearization (McDonald & Briley, Ref. 11). 

On the other hand, if a steady solution is the only objective, then temporal 
accuracy is of little concern, and a stable method requiring minimal computational 
effort per time step (the present objective) is attractive. The topic of nonlinear 
truncation errors is discussed further by McDonald and Briley (Ref. 11). 

The present numerical method was developed for the Navier-Stokes equations 
by Briley and McDonald (Ref. 12) and for steady supersonic flows by McDonald and 
Briley (Ref. 11). Here the method is formalized for mixed parabolic-hyperbolic 
systems having the form of Eq. (1), and is applied to the Navier-Stokes equations. 

Recently, Beam and Warming (Ref. 13) have specialized this same linearization 
procedure to equations in conservation-law form, with emphasis on the inviscid 
Euler equations. Beam and Warming also employed compact spatial differencing 
techniques analogous to those discussed by Mitchell (Ref. 14, p. 51) but in more 
general circumstances. Although highly effective as applied by Beam and Warming to 
conservation laws, the compact spatial differencing appears to lose its advantage 
in computational efficiency over more conventional differencing techn~ques, when
ever both first and second-order derivatives are present. This point will be 
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discussed subsequently. Beam and Warming also suggested valuable techniques for 
use in computing flows containing shocks. 

Linearization Technique 

Background 

A number of techniques have been used for implicit solution of the following 
first-order nonlinear scalar equation in one dependent variable ¢(x,t): 

Special cases of Eq. (9) include the conservation form if F(¢) = 1, and quasilinear 
form if G(¢) = ¢. Previous implicit methods for Eq. (9) which employ nonlinear 
difference equations and also methods based on two-step predictor-corrector schemes 
are discussed by Ames (Ref. 15, p. 82) and von Rosenberg (Ref. 16, p. 56). One 
such method is to difference nonlinear nonlinear terms directly at the implicit 
time level to obtain nonlinear implicit difference equations; these are then solved 
iteratively by a procedure such as Newton's method. Although otherwise attractive, 
there may be difficulty with convergence in the iterative solution of the nonlinear 
difference equations, and some efficiency is sacrificed by the need for iteration. 
An implicit predictor-corrector technique has been devised by Douglas and Jones 
(Ref. 17) which is applicable to the quasilinear case (G = ¢) of Eq. (9). The 
first step of their procedure is to linearize the equati~n by evaluating the non
linear coefficient as F(¢n) and to predict values of ¢n+2 using either the backward 
difference or the Crank-Ni2olson scheme. Values for ¢n+l are then computed in a 
similar manner using F(¢n+2) and the Crank-Nicolson scheme. Gourlay and Morris 
(Ref. 18) have also proposed implicit predictor-corrector techniques which can be 
applied to Eq. (9). In the conservative case (F=l), their technique is to define 
q(¢) by the relation G(¢) "" e)G(¢) when such a definition exists, and to evalua~e 
G(¢n+l) using values for ¢n+l computed by an explicit predictor scheme. With G 
thereby known at the implicit time level, the equation can be treated as linear, 
and corrected values of ¢n+l are computed by the Crank-Nicolson scheme. 

A technique is described here for deriving linear implicit difference 
approximations for nonlinear differential equations. The technique is based on an 
expansion of nonlinear implicit terms about the solution at the known time level, 
tn, and leads to a one-step, two-level scheme which, being linear in unknown 
(implicit) quantities, can be solved efficiently without iteration. This idea was 
applied by Richtmyer and Morton (Ref. 19, p. 203) to a scalar nonlinear diffusion 
equation. Here, the technique is developed for problems governed by j, nonlinear 
equations in j, dependent variables which are functions of time and space coordinates. 
Attention is restricted to nonlinear systems having the form of Eq. (1). 
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The solution domain is discretized by grid points having equal~spacings, 
6X, 6Y, and 6z, in the x, y, and z directions, respectively, and an arbitrary time 
step, 6t. Provisions for nonuniform grid spacing will be introduced subsequently. 
The subscripts i, j, k and superscript n are grid point indices associated with x, 
y, z, and t, respectively, and thus ¢f j k denotes ¢ (xi,yj,Zk,tn ). It is assumed 
that the solution is known at the n le~ei, tn, and is desired at the (n+l) level, 
tn+l. At the risk of an occasional ambiguity, one or more of the subscripts is fre
quently omitted, so that ¢n is equivalent to ¢~ . k' 1,J, 

Linearized Difference Scheme 

The linearized difference approximation is derived from the following implicit 
time-difference replacement of Eq. (1): 

(H n + 1 _ Hn) /!J. t = {3 [')) (¢n + , ) + s n + '] + (I _ (3) [')) (cp n ) + S n ] (10) 

where, for example, ~+l = H(¢U+l). The form of D and the spatial differencing 
are as yet unspecified. A parameter S(O $ S $ 1) has been introduced so as to 
permit a variable centering of the scheme in time. Equation (10) produces a backward 
difference formulation for S = 1 and a Crank-Nicolson formulation for S = 1/2. 
Unconditional stability is anticipated for S > 1/2. 

The linearization is performed by a two-step process of expansion about the 
known time level t n and subsequent approximation of the quantity (C¢/dt)n6t, which 
arises from chain rule differentiation, by (¢n+l_¢n). The result is 

Hn+1 = Hn +U~H/acp)n (cpn+l_cpn) + o (LH)2 

Sn+1 =Sn+(aS/acp)n (cpn+l_cpn) +0 (~t)2 

n 
'))(cpn+l) = .2l(cpn)+(a'))lacp)(cpn+I_¢n)+0(~t)2 

(lla) 

(lIb) 

(llc) 

The matrices OH/d¢ and dS/C¢ are standard Jacobians whose elements are defined, 
for example, by (CH/d¢)gr = CHq/C¢r. The operator elements of the matrix d'JJ/d¢ 
are similarly ordered, l.e., (d~/d¢)qr = o'JJq/C¢r; however, the intended meaning 
of the operator elements requires some clarification. For the qth row, the opera
tion (d2>q/d¢)n (¢n+l_ ¢n) is understood to mean that [%t2>q[¢(x,y,z,t)]}n 6t 
is computed and that all occurrences of (C¢r/ot)n arising from chain rule differen
tiation are replaced by (¢~+l - ¢~)/6t. 

After linearization as in Eqs. (11), Eq. (10) becomes the following linear 
implicit time-differenced scheme: 

10 



Although Hn+l is linearized to second order in Eq. (lla), the division by ,'}t in 
Eq. (10) introduces an error term of order ,'}t. A technique for maintaining formal 
second-order accuracy in the presence of nonlinear time derivatives is discussed 
by McDonald and Briley (Ref. 11), however a three-level scheme results. Second
order tempor~l accuracy can also be obtained (for S == 1/2) by a change in dependent 
variable to ¢ = H(¢), provided this is convenient, since the nonlinear time deriva
ti ve is then eliminated. The temporal accuracy is independent of the spatial accuracy. 

On examination, it can be seen that Eq. (12) is linear in the quantity 
(¢n+l _ ¢n) and that all other quantities are either known or evaluated at the n 
level, Computationally, it is convenient to solve Eq. (12) for (¢n+l - ¢n) rather 
than ¢n+l, This both simplifies Eq. (12) and reduces roundoff errors, since it is 
presumably better to compute a small O(,'}t) change in an 0(1) quantity than the 
quantity itself. To simplify the notation, a new dependent variable W defined by 

(13) 

,I,n+l __ ~n+l _ ~n, and 11,n is introduced, and thus 0/ ~ ~ 0/ O. It is also convenient to 
rewrite Eq. (12) in the following simplified form: 

(14a) 

where the following symbols have been introduced to simplify the notation: 

It is noted that 1(W) is a linear transformation and thus 1(0) == O. Furthermore, 
if1l(¢) is linear, then 1(W) == -S.2>(W). 

spatial differencing of Eq. (14a) is accomplished simply by replacing derivative 
operators such as 0/ ex, -02 / ex2 by corresponding finite difference operators, Dx , D~. 
Henceforth, it is assumed that 1l and J have been discretized in this manner, unless 
otherwise noted. 

In practice, difference schemes generated by the foregoing procedures are often 
quite simple. For example, the continuity equation (3a) becomes 

(15) 

n+l "1:1+1 
which couples p and u 
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Discussion 

Before proceeding, some general observations seem appropriate. The foregoing 
linearization technique assumes only Taylor expandability, an assumption already 
implicit in the use of a finite difference method. The governing equations and 
boundary conditions are addressed directly as a system of coupled nonlinear equations 
which collectively determine the solution. The approach thus seems more natural 
than that of m~~ing ad hoc linearization and decoupling approximations, as is often 
done in applying implicit schemes to coupled and/or ronlinear partial differential 
equations. With the present approach, it is not necessary to associate each 
governing equation and boundary condition with a particular dependent variable 
(e.g., assumed u is governed by the x momentum equation, p by continuity, etc.) 
and then to identify various Ifnonlinear coefficients If and Ifcoupling terms lf which 
must then be treated by lagging, predictor-corrector techniques, or iteration. The 
Taylor expansion procedure is analogous to that used in the generalized Newton
Raphson or quasilinearization methods for iterative solution of nonlinear systems 
by expansion about a known current guess at the solution (e.g., Bellman & Kalaba, 
Ref. 20). However, the concept of expanding about the previous time level has 
apparently not been employed to produce a noniterative implicit time-dependent 
scheme for coupled equations, wherein nonlinear terms are approximated to a level 
of accuracy commensurate with that of the time differencing. The linearization 
technique also permits the implicit treatment of coupled nonlinear boundary condi
tions, such as stagnation pressure and enthalpy at subsonic inlet boundaries, and 
in practice, this latter feature was found to be crucial to the stability of the 
overall method. 

Application of Alternating-Direction Techniques 

Solution of Eq. (14a) is accolllplished by application of an alternating
direction illlplicit (ADI) technique for parabolic-hyperbolic equations. The original 
ADI method was introduced by Peaceman and Rachford (Ref. 10) and Douglas (Ref. 21); 
however, the alternating-direction concept has since been expanded and generalized. 
A discussion of various alternating-direction techniques is given by Mitchell (Ref. 
14) and Yanenko (Ref. 22). 

The present technique is simply an application of the very general procedure 
developed by Douglas and Gunn (Ref. 4) for generating ADI schemes as perturbations 
of fundamental illlplicit difference schemes such as the backward-difference or 
Crank-Nicolson schemes. 

For the present, it will be assumed that ~(¢) contains derivatives of first 
and second order with respect to x, y, and z, but no mixed derivatives. In this 
case, ~ can be split into three operators, ~x' ~y' ~z associated with the x, y, and 
z coordinates and each having the functional form~~ == q(¢, d/~, o2/'if!-) for a 
typical coordinate x. Equation (14a) then becomes 
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Recalling that L(~n) = 0, the Douglas-Gunn representation of Eq. (16) can be 
written as the following three-step solution procedure: 

(A + b. t.L\ )1/1 >\< = td [( .2> x + .2> y + .2> z ) ~ n + 5 n ] 

(A+b.t .1 y>I/I** =AI/I* 

(A+b.t .1 z)I/In+1 =AI/I** 

(16) 

(17a) 

(17b) 

(17c) 

where ~* and ~** are intermediate solutions. It will be shown subsequently that 
each of Eqs. ~n can be written in narrow block-banded matrix form and solved 
by efficient block-elimination methods. If ~* and ~** are eliminated, Eqs. (17) 
become 

If the multiplication on the left-hand side of Eq. (18) is performed, it becomes 
apparent that Eq. (18) approximates Eq. (16) to order (6t)2. Although the stability 
of Eqs. (17) has not been established in circumstances sufficiently general to 
encompass the Navier-Stokes equations, it is often suggested (e.g., Richtmyer & 
Morton, Ref. 19, p. 215) that the scheme is stable and accurate under conditions 
more general than those for Wllich rigorous proofs are available. This latter notion 
is adopted here as a working hypothesis supported by favorable results obtained 
in actual computations. 

A major attraction of the Douglas-Gunn scheme is that the intermediate 
solutions ~* and ~** are consistent approximations to ~n+l. Furthermore, for steady 
solutions, ~n = ~* = ~** = ~n+l independent of 6t. TIlus, physical boundary condi
tions for ~n+l can be used in the intermediate steps without a serious loss in 
accuracy and with no loss for steady solutions. In this respect, the Douglas-Gunn 
scheme appears to have an advantage over locally one-dimensional (LOD) or "splitting" 
schemes, and other schemes whose intermediate steps do not satisfy the consistency 
condition. The lack of consistency in the intermediate steps complicates the treat
ment of boundary conditions and, according to Yanenko (Ref. 22, p. 33), does not 
permit the use of asymptotically large time steps. It is not clear that this advan
tage of the Douglas-Gunn scheme would always outweigh other benefits which might 
be derived from an alternative scheme. However, since the ADI scheme can be viewed 
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as an approximate technique for solving the fundamental difference scheme, Eq. 
(14a), alternate ADI schemes can readily be used within the present formulation. 

It is worth noting that the operator :.0 can be split into any number of 
components which need not be associated with a particular coordinate direction. 
As pointed out by Douglas and Gunn (Ref. 4), the criterion for identifying sub
operators is that the associated matrices be "easily solved" (Le. narrow-banded). 
Thus, mixed derivatives can be treated implicitly within the ADI framework, 
although this would increase the number of intermediate steps and thereby compli
cate the solution procedure. Finally, only minor changes are introduced if, in 
the foregoing development of the n~erical method, H, :.0, and S are functions of 
the spatial coordinates and time, as well as ¢. 
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Solution of the Implicit Difference Equations 

Second-Order Spatial Differences 

Since each of Eqs. (17) is implicit in only one coordinate direction, the 
solution procedure can be discussed with reference to a one-dimensional problem. 
For simplicity, it is sufficient to consider Eq. (17a) with~ ,~z = O. For the 
moment, attention is focused on the following three-point difrerence formulas: 

Dl' cp == [a b. _ + ( 1 - a) b.+] cp / b. X = ( a cp / ax) i + 0 [b. X 2 + ( a -I /2) b. x] 

(19b ) 

for a typical coordinate X. Here, ~_= ¢i - ¢i-l' ~+ = ¢i+l - ¢i' and a parameter 
~ has been introduced (0 ~ ~ ~ 1) so as to permit continuous variation from back
ward to forward differences. The standard central difference formula is recovered 
for ~ = ~ and was used for all solutions reported here. 

As an example, suppose that the qth component of ~x has the form 

(20) 

where F and G are column vector functions having the same but an arbitrary number 
of components; FT denotes the transpose of F. The form of Eq. (20) permits govern
ing equations having any number of first and second derivative terms. Then, 

(21) 

It is now possible to describe the solution procedure for Eq. (17a) for the 
one-dimensional case with~ given by Eq. (20) and difference formulas given by 
Eq. (19). Because of the ~patial difference operators, Dx and Dx2 , Eq. (17a) 
contains *~ l' *~, and *~+l; consequently, the system of linear equations generated 

l- l l 
by writing Eq. (17a) at successive grid points x. can be written in block-tridiagonal 

l 
form (simple tridiagonal for scalar equations, £ = 1). The block-tridiagonal 
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matrix structure emerges from rewriting Eq. (17a) as 

a~ 1/1,* + b~I/I,* +c~I/I~ = d~ 
I I-I I I I 1+1 I (22 ) 

where a, b, c are square matrices and d is a column vector, each containing only 
n-level quantities. The qth component of d and qth row-components of a, b, care 
given by 

(a~)q:: [(OF~ / OCP)~blq)in_l+ (F~ )~(2 Glq /2cf:> )~_I ]a/L1X 

- [(oFiq / acp )~(G2q)~_1 +(Flq)~ (OG2q/OCP)~_I] / (L1X)2 

(bnj)q = (OHq/aCP)~ /{3b. t - (aSq/acp)~ 

+ [(OFI~/O¢)~(Glq)~ +(FI~)~(aGlq/a¢)~](1-2a)/L1X 

+2 [(oFiq /a¢)~(G2q)~ +(F2Tq)~ (OG2q/acp)~] /(L1x)2 

( c r ) q :: [( 0 FI~ / oCP ) ~ (G I q) ~ + I + (F I~ ) ~ ( 0 G I q / o¢ ) ~ + I] (a -I ) / L1 x 

- [(OF~ q / O¢)~ (G2q)~ +1 +(F2Tq)~ (OG 2q / O¢)~ +1] /( L1X)2 

(23a) 

(23b) 

(23c) 

(23d) 

When applied at successive grid points, Eq. (22) generates a block-tridiagonal system 
of equations for \j!* which, after appropriate treatment of boundary conditions, can 
be solved efficiently using standard block-elimination methods as discussed by 
Isaacson and Keller (Ref. 23, p. 58). The solution procedure for Eqs. (l7b&c) is 
analogous to that just described for Eq. (17a). It is worth noting that the spatial 
difference parametera canbe varied with i or even term by term. For example, an 
"upwind difference" formula can be obtained if a is chosen as 1 or -1 depending on 
the sign of the elements of Fl' 
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Fourth-Order Spatial Differences 

Fourth-order spatial accuracy can be obtained by using the following standard 
five-point difference formulas in place of Eqs. (19): 

(24a) 

(24b) 

In this instance, the block-tridiagonal structure of Eq. (22) expands to block quin
diagonal. Block-quindiagonal systems are easily solved using banded Gaussian block
elimination. The question arises, however, whether the increased accuracy thus 
obtained is worth the additional computation involved in solving block-quindiagonal 
systems. This topic will be discussed subsequently. 

Recently, there has been revived interest (Orszag & Israeli, Ref. 1) in the 
following fourth-order compact difference formulas involving only three grid points: 

D"'~ = _1-
x't' 2!J.X (25a) 

(25b) 

To implement Eqs. (25) within the ADI framework, the difference equations are multi
plied by the denominator of Eq. (25a) or (25b) at the appropriate step in the solu
tion procedure (cf. Mitchell, Ref. 14; Beam & Warming, Ref. 13). 

The attraction of Eqs. (25) over (24) is that Eqs. (25) lead to block-tridiagonal 
rather thanblock-quindiagonal equations. One difficulty which arises with Eqs. (25), 
however, is that the denominators are different and must be removed separately when 
both first and second order derivatives are present, as in the Wavier-Stokes 
equations. Consequently, first and second derivative terms require a separate step 
in the ADI procedure, and thus two block-tridiagonal systems must be solved for 
Eqs. (25), as opposed to one block-quindiagonal system for Eqs. (24), in each 
coordinate direction that both first and second derivatives appear. In terms of 
computational effort, these requirements are approximately equal, as will be shown 
in the following section, and from this standpoint, there is little to choose between 
Eqs. (24) & (25). Both Eqs. (24) and (25) suffer from complications in applying 
boundary conditions, as is usually the case when a difference formula is of higher 
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order than the derivative approximated. One disadvantage of Eqs. (25) is that the 
evaluation of explicit derivatives requires the solution of a simple tridiagonal 
system for each dependent variable present. Another limitation of Eqs. (25) arises 
when terms containing derivatives with nonconstant coefficients are present, for 
example, variable viscosity terms. Each nonconstant coefficient can be removed by 
division prior to clearing the denominator of Eqs. (25), but as a consequence, each 
term of this type in the same governing equation also requires a separate step in 
the ADI procedure, and the solution of a block-tridiagonal system. The authors are 
thus inclined to favor the five-point formulas Eqs. (24), since their use and effi
ciency is less dependent on the form of the governing equations. 

Computing Requirements 

Various block-elimination algorithms can be devised for solution of equations 
with block-banded matrix structures (cf., Isaacson & Keller, Ref. 23). Such algo
rithms can be derived using variants of Gaussian elimination for a banded matrix, 
but with the square submatrix elements of the banded matrix processed using matrix 
algebra. Thus, operations involving matrix subelements are not assumed to commute, 
and division by a matrix subelement is accomplished by computing the inverse and 
multiplying. Following this procedure, the authors have developed algorithnls for 
both block-tridiagonal and block-quindiagonal systems arising from the respective 
second and fourth-order difference formulas, Eqs. (19) & (24). Each algorithm 
requires only one inverse per grid point. A standard operation count (scalar 
multiplications and divisions) has been performed for systems with 1 x 1 block 
elements and N diagonal block elements, i.e., 1 coupled equations along N grid 
points. The block-tridiagonal scheme requires (3N-2) (13 + 12) operations, the same 
as the matrix factorization scheme of Isaacson and Keller' (Ref. 23); the block-quin
diagonal scheme requires (7N-IO) 13 +(5N-6)12 operations, which is only slightly 
more than twice the block-tridiagonal number. 

Orszag and Israeli (Ref. 1, p. 284) have estimated that fourth-order schemes 
achieve results in the 5 percent accuracy range with approximately half the number 
of grid points in each direction, as compared with second-order schemes. Thus based 
on the foregoing estimate and operation counts, _it is concluded that for one-dimensional 
problems, use of the fourth-order scheme is roughly equivalent in terms of accuracy 
and computational cost to using the second-order scheme with twice as many grid points. 
In two and three dimensions,_however, the second-order scheme requires four and eight 
times as many grid points, respectively, to obtain accuracy comparable to fourth-
order schemes, and the fourth-order scheme is well worth thA factor of two in ~om-
putat ional effort per grid point. 

Assuming there are N grid points in each coordinate direction, the total num
ber of operations for a single time step is obtained from the operation count for 
solution of one block-banded system by multiplying by 2N and 3N2 for two and three 
dimensions, respectively. 
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For the particular case of the Navier-Stokes equations (3) with p eliminated 
using Eq. (6), it is possible to reduce the computational effort substantially by 
taking advantage of the special nature of the coupling during each ADI sweep. In 
this case, it is only necessary to solve one block-banded system with L = 3, as 
well as two simple banded systems (L = 1). This can be seen by careful examination 
of Eqs. (3). During the first step of the ADI procedure, only derivatives with 
respect to x and t from Eqs. (3) appear in the implicit difference equations. In 
the cOEtinuity, x momentum, and energy equations, these implicitly treated terms 
contain p, u, and T, but not v and w; therefore, the difference equations from these 
three equations can be solved for p*, u*, and T* during the first ADI step by sol
ving a block-banded system with L = 3. Having obtained values for p*, u*, and T* 
in this manner, the difference equations for the y and z momentum equations can then 
be solved independently for v* and w*; since the y and z momentum equations are 
uncoupled with respect to v* and w* during this ADI step, the latter computation 
only requires the solution of two simple banded systems (L = 1). A similar situation 
exists for the remaining two steps of the ADI procedure, except that during the 
second step (y derivatives treated implicitly), the difference equations from the 
continuity, y momentum, and energy equations are solved as coupled equations for 
p**, v**, and T**, and during the third step (z derivatives treated implicitly), the 
difference equations from the continuity, z momentum, and energy equations are solved 
as coupled equations for pn+l, wil+l , and Tn+l. 

For tridiagonal systems, the operation count is reduced from order 450 N for 
one L = 5 system to order 118 N for one L = 3 and two L = 1 systems. For quindiag
onal systems, these estimates are 1000 Nand 258 N, respectively. Consequently, the 
arrangem~nt leading to three coupled and two uncoupled equations is quite worthwhile. 
For comparison, it is noted that in the case of the Navier-Stokes equations (3), 
merely evaluating the right-hand s~de of Eq. (17a), which would be a mlnlffium require
ment for a one-step explicit scheme, requires 302 N operations for a 3-point differ
enceformula and 488 N operations for a 5-point formula. 

In view of the many factors involved, it is difficult to evaluate precisely 
or with any generality the overall computational efficiency of the present method 
relative to various other methods. However, the foregoing operational counts show 
that the effort expended to solve the implicit difference equations by block-elimi
nation is not excessive compared with that necessary simply to evaluate the differ
enced Navier-Stokes equations, let alone the various other bookkeeping tasks present 
in most large-scale computer programs for fluid dynamics problems. In the solutions 
presented here, the solution of the tridiagonal and block-tridiagonal systems using 
double precision arithmetic required only about one third to one half of the total 
computer time per time step. 
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APPLICATION TO FLOW IN A STRAIGHT DUCT 

Problem Formulation and Boundary Conditions 

To explore the stability properties and general capabilities of the present 
method, some test calculations were made for three-dimensional laminar subsonic 
flow in the entrance region of a straight duct with rectangular cross section. 
The straight duct geometry was chosen for its simplicity, and consideration was 
limited to subsonic flow to avoid the possible occurrence of shocks. A consider
ation of shocks and other complicating factors which would have hindered the 
orderly development of the method is reserved for future studies. Application 
of the present method is straightforward once H, S, and ~ are identified, and 
for the present calculations, these quantities are given in the Appendix. In 
applying the numerical method, the dissipation term, ~, defined by Eq. (5), and 
the viscous terms in Eq. (4) containing V'U were treated explicitly by evaluation 
at the n level. This is accomplished by setting ~ = 0 in Eq. (14b). Although 
~ could be treated implicitly and linearized, this would unnecessarily complicate 
the difference equations. The viscous terms involving V'U contain mixed deriva
tives whose treatment by ADI methods is somewhat awkward, as mentioned previously. 
For the solutions presented here and other test cases computed while developing 
the method, the explicit treatment of the aforementioned viscous and dissipation 
terms had no observable adverse affect on stability. All solutions presented 
here were made using three-point centered difference formulas [i.e., a = 1/2 in 
Eq. (19)J, and since steady solutions were the primary objective, the backward 
time difference form (~ = 1) was employed throughout. In each case, the refer
ence length, Lr , was taken as the duct width, and values of 0.73 and 1.4 were 
used for Pr and y, respectively. 

The flow geometry and coordinate system are shown in Fig. 1. Boundary and 
initial conditions are required to complete the problem formulation. It is 
assumed that the duct is fed from a large stagnant reservoir and exhausts into 
a constant-pressure reservoir. As an approximation to these conditions, the 
isentropic stagnation temperature, To' and stagnation pressure, Po' are specified 
as upstream boundary conditions, and the static pressure, Ps ' is specified as a 
downstream condition. These quantities can be written in nondimensional form as 

(26a) 

, T(....L) Y /(I-Y) 
PO=~PTo (26b) 

p. = -'- pT s M2 
Y 

(26c) 

20 



R75-9ll363-l5 

The u and v velocity components are small and were neglected in the definition 
of To' Including the u and v components in the definition of To would couple 
all five governing equations at the upstream boundary during the z-direction 
step of the ADI procedure. Unless u and v were treated explicitly, this coupling 
would preclude, during this ADI step, the use of the more efficient solution 
technique previously described, in which only three equations are coupled. 
Implicit boundary conditions are obtained by writing Eq. (26) at the (n + 1) 
level and linearizing by the same procedure employed for the governing equations 
at interior points. The specified downstream static pressure, Ps ' was an esti
mate of that required to maintain an average nondimensional velocity of 1.0 at 
the duct entrance. Additional boundary conditions are required at the upstream 
and downstream boundaries. The relation D~wn+l = 0 was used at points adjacent 
to the upstream boundary. This boundary condition is equivalent to a linear 
extrapolation of wn+l on the upstream boundary from values at the two adjacent 
interior points (on a line in the z direction), and will be referred to sub
sequently as implicit linear extrapolation. 

As the remaining upstream boundary conditions, the normal derivatives of 
un+l and vn+l are set equal to zero using three-point, second-order, one-sided 
difference approximations. At the downstream boundary, implicit linear extra
polation relations were used for Tn+l , un+l , vn+l , and wn+l , together with the 
static pressure relation. No-slip conditions were specified on the walls of the 
duct, and adiabatic conditions were imposed by setting normal derivatives of 
temperature to zero using three-point, one-sided difference formulas. In addi
tion, the wall density was determined implicitly using a three-point, one-sided 
difference approximation of the continuity equation. Since the flow is symmetric 
about the horizontal and vertical planes passing through the duct centerline, 
solutions were computed for one quadrant of the duct, and symmetry conditions 
were imposed on these planes of symmetry. 

Stability Tests 

computed Solutions 

Two sequences of solutions were computed for Re = 60 with a 6 x 6 x 6 grid 
and using different time steps, to explore the stability properties of the method. 
To provide a frame of reference, stability numbers NCFL and NRe are defined as 
the ratio of the actual time step ~t to the maximum allowable time step as deter
mined by the CFL and viscous stability limits, respectively, for one dimensional 
uniform flow at the reference velocity and Mach number. These stability numbers 
are given by 

(27a ) 
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(27b ) 

Typically, conditionally stable methods would require NCFL ' N~ ~ 1 for stability. 
Multidimensional forms of Eq. (27) are more restrictive; however, splitting 
techniques can be employed (cf. MacCormack & Paull~, Ref. 24) to recover the 
one-dimensional forms. In actual computations with a conditionally stable method, 
the stability limits would vary from point to point with the local velocity, 
Mach number, and mesh size; however, Eq. (27) provides convenient reference 
quantities. 

The initial conditions used for the stability tests are those appropriate for 
,I. uniform flow in the z direction at the reference velOcity and with the specified 

stagnation pressure and temperature. At t = 0, the no-slip conditions were 
applied and the downstream static pressure was impulsively reduced to Ps ' The 
duct geometry has Xl = Yl = 1, zl = 0.5. 

The downstream centerline value of (~+l - Wn)/At is a sensitive indicator 
of steady-state conditions and is shown in Fig. 2 for a sequence of solutions 
with M = 0.44. It can be seen that the method gave stable solutions for test 
cases in the range NCFL ~ 43.2, N~ ~ 4.4, and that steady conditions were reached 
with significantly fewer time steps for higher NCFL ' A second sequence of solu
tions was computed for M = 0.044, and similar results were obtained (Fig. 3) for 
NCFL ~ 14!1, N~ ~ 20.6. 

The transient accuracy of the M = 0.44 test cases can be assessed in Fig. 4, 
although as mentioned earlier, transient accuracy was not an objective of these 
calculations. The solutionsin Fig. 4 are not independent of the time step (NCFL), 
and thus there is temporal truncation error in these solutions. However, curves 
~ & ~ displ~ far less dependence on NCFL than the remaining curves, and thus it 
appears that convergence is beginning for NCFL ~ 2.2. Steady-state conditions are 
reached in a nondimensional time on the order of 4 for curves a & b. Clearly, 
the temporal truncation error is much greater for curves ~ & ~- (10.8 ~ NCF~21.6), 
although these latter cases reached steady state. in fewer time steps (Fig. ~). 
Similar plots of the transient solution for the M=0.044 test cases are given in 
Fig. 5. 

It should be emphasized that the degree of transient accuracy indicated in 
Figs. 4 and 5 is not a general indication of the accuracy achieyable at a given 
NCFL or N~ with the present method, since these stability tests involve first
order backward time differenQes, a very coarse mesh, and impulsive starting 
conditions. 
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Solutions attempted for NCFL = 108 (M=0.44) and NCFL = 14,710 (M = 0.044) 
were unstable. Although the precise cause of the instability is unknown, the 
difficulties did appear to originate near the boundaries. Since solutions to 
Eq. (17) in general need exist only for sufficiently small ~t, one possible 
explanation other than the obvious one of a conventional instability is that 
the system of implicit difference equations is near singular for these step 
sizes. 

Although possibly by coincidence, it is noted that the breakdown occurred 
for time steps which were larger than the apparent time periods (t ~ 4) of the 
physical transients as determined in Figs. 4 and 5. 

The effect of mesh size on computed solutions was examined empirically for 
the M=0.44 test case. Axial velocity profiles are compared in Fig. 6 for two 
solutions having 6 x 6 x 6 and 11 x 11 x 11 grids in the computed quadrant of 
the duct; the two solutions are in satisfactory agreement. The error is larger 
at the duct entrance, where the inlet conditions are somewhat severe for the 
mesh spacing used. In Fig. 7, centerline velocity and pressure are shown for 
three solutions having 6, 11, a~d 21 mesh points in the z direction. This'com
parison also reflects a reasonable influence of mesh size on the solutions. 

Solution With Moving Wall 

An additional solution was computed for M=0.44, Re = 60 but with a large 
secondary' flow caused by moving two parallel duct walls in a direction perpen
dicular to the axial flow direction; the wall speed is about 25 percent of the 
average axial velocity. Since the flow is symmetric about a horizontal plane 
midway between the moving Walls, only the lower half of the flow field was com
puted, and computer-produced drawings of selected streamlines for this solution 
are shown in Fig. 8. No data or other theoretical studies are available for com
parison in this instance and the computed solutions are presented largely as a 
demonstration of stability in the presence of large secondary flows. 

High Reynolds Number Solutions 

Nonuniform-Grid Transformation 

The accuracy of solutions computed with a given number of grid points can 
often be improved by using a nonuniform grid spacing to ensure that grid points 
are closely spaced in regions where the solution varies rapidly and widely 
spaced elsewhere. 

An analytical coordinate transformation has been devised by Roberts (Ref. 25) 
which is an effective means of introducing a nonuniform grid when the steep 
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gradients occur near the computational boundaries. If N grid points are to be 
used in the range 0 ~ x ~ 1, and if steep gradients are anticipated in a region 
of thickness 0 near x = 0, then Roberts' transformation ~ (x) is given by 

( X + a -I ). '" ( a + 1 'I 7](X)=N+(N-l)log x+a+I/ log a-Ii 
(28 ) 

where a2 = 1/(1 - 0). The use of equally-spaced points in the transformed 
coordinate ~ provides resolution of both the overall region 0 ~ x ~ 1 and the 
subregion 0 ~ x ~ 0. The transformation (28) was employed in high Reynolds 
number solutions to provide increased resolution near the duct entrance and 
in boundary layers on the duct walls. Values of 0.1, 0.1, and 0.25 were used as 
o for the x, y, and z coordinates, respectively. 

Artificial Dissipation 

In computing solutions for high Re , it was necessary to add a form of 
artificial viscosity or dissipation for the axial flow direction. Artificial 
dissipation in some form is often useful in practical calculations to stabilize 
the overall method when boundary conditions are treated inaccurately, when 
coarse mesh spacing is used, or in the presence of discontinuities. [Von Mises 
(Ref. 26) has shown that certain discontinuities in solutions of the Navier
Stokes equations are possible despite the presence of physical viscosity and heat 
conductiort terms.] The need for artificial dissipation arises in certain 
instances when centered spatial difference approximations are used for first 
derivative terms. The use of artificial dissipation is thus a matter of spatial 
differencing technique, and is commonly employed in either explicit or inherent 
form and in both explicit and implicit difference schemes. The particular form 
described here was adequate for present purposes but is considered provisional 
and is not recommended for general use, since the formal accuracy is lowered to 
first order for the axial (z) coordinate direction. 

The dissipation term used here is based on an observation (e.g., Roache, 
Ref. 27, p. 162) that for a linear model problem representing a one-dimensional 
balance of convection and diffusion terms, solutions obtained using central 
differences for the convection term are well behaved provided the mesh Reynolds 
number Re = \w\AZ Re is ~ 2, but that qualitative inaccuracies (associated with 
boundary ~Bnditions) occur for Re~z > 2. This suggests the use of an artificial 
viscosity term of the form € D2¢, where z z 

{ IWI.~Z _ _ I = _, (ReLlz _I) 
Ez = 2 Re Re 2 

o 
(29) 
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to ensure that the local effective mesh Reynolds number is no greater than two. 
This dissipation term was added to each of the governing equations, with ¢ taken 
as p for the continuity equation, u, v, w for the respective x, y, and z momentum 
equations, and T for the energy equation. For scalar equations, the foregoing 
technique is equivalent to that developed by Spalding (Ref. 28) from an argument 
not involving artificial viscosity. 

Computed Solution 

A solution is presented for M=0.3, Re = 600 and a duct geometry for which 
x = Yl = 1, zl = 5. An 11 x 11 x 21 grid was used, along with a variable time 
step with NCFL up to 380 and, N~ up to 12. 

Computed axial velocity profiles at the duct entrance and exit are shown in 
Fig. 9 for this case. The subscript 1 denotes conditions at the duct entrance. 
The axial variation of pressure ratio and Mach number is given in Fig. 10. As 
a check on the solution, two additional pressure curves are shown. One curve 
represents the pressure ratio from one-dimensional theory for adiabatic, 
frictional, constant-area flow of a perfect gas (Shapiro, Ref. 29). Using this 
theory, the pressure ratio between two points can be evaluated if the Mach 
numbers are known; the average Mach number, Mav ' (averaged over the cross 
section) from the Navier-Stokes solution was us~d for this evaluation. The second 
curve assumes isentropic flow and constant stagnation pressure along the center
line of the duct and was evaluated from the isentropic relations for a perfect 
gas using the computed centerline Mach number, Mn' The general agreement of 
pressure ratio distributions seen in Fig. 10 is an indication of internal 
consistency in the computed solution. Since the average inlet Mach number is 
only 0.27, and since the axial variation in density is only about 8 percent, 
compressibility effects should be relatively minor for this solution. The 
computed pressure drop was therefore compared with the experimental measurements 
of Beavers, Sparrow, and Magnuson (Ref. 30) for incompressible flow and found 
to be in reasonable agreement, considering the difference in M. The results 
of this comparison are shown in Fig. 11. 

In assessing the high Reynolds number solution, the question arises as to 
whether the artificial viscosity destroys the accuracy by changing the effective 
Reynolds number of a viscous calculation. Here, it should be emphasized that the 
artificial viscosity was used only for the axial coordinate direction, where 
viscous terms are generally unimportant; second-order accuracy was rigorously 
maintained for the two transverse directions, for which viscous stresses are large. 
The magnitude of the artificial viscosity terms in the computed solutions was 
examined ~ posteriori and compared with other terms in the equations. It was 
found that the artificial viscosity terms were no greater than about 2 percent 
of the largest term in each equation, except at grid points very near the edges 
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of the duct walls at the entrance. The specification of constant stagnation 
pressure and temperature at the entrance along with the no-slip conditions on t~e 
walls produces very large gradients in this region, and the artificial viscosity 
terms were as large as 15 to 20 percent there. It is believed, however, that the 
accuracy was not seriously degraded by the artificial viscosity except, of course, 
locally near the entrance edges of the walls. As a final check on the solutions, 
the mass flow rate was computed by integration of w over the cross section at 
each axial location in the duct and was found to be constant to within 0.4 per
cent. 

The UNIVAC 1108 run time for the solutions presented here was about 3.5 x 
10-4 minutes per grid point per time step, which includes the use of auxiliary 
storage devices. Solution of the implicit difference equations was performed in 
double precision. Convergence to a steady solution required from 20 to 100 
time steps, depending on how the time step was chosen. 

Convergence Acceleration Tests 

In the solutions presented to this point, a constant or more or less 
monotonically increasing time step was used, and this time step was selected 
on the basis of rough estimates of the physical time scales present in the 
transient evolution toward steady state. However, when transient accuracy is 
of no concern (as is the case for computing steady solutions), the time step 
can be regarded as an iteration parameter which can be selected so as to speed 
up the convergence to a steady solution. In previous studies in which ADI 
methods have been used to solve iteratively scalar elliptic equations such as 
Poisson's equation, it has been established (Ref. 31) that a significant improve
ment in rate of convergence can be achieved by the cyclic use of a sequence of 
acceleration parameters (time steps) of differing magnitude, rather than a single 
parameter. This concept was explored to a limited extent for application to the 
Navier-Stokes system of equations. A sequence of solutions to a sample problem 
was computed in which single (constant) time steps of various sizes were used. 
The sample problem consisted of two-dimensional laminar flow in a straight channel 
with a length to width ratio of 10:1, with M = 0.5 and Re = 300, and using an 
11 x 11 grid. By comparing the transient solutions and convergence rates for the 
different time steps, it was established that the optimum single time step for 
this problem was about 0.1 times the time required for a particle to pass through 
the channel at the average flow velocity, and that about 25 time steps were 
required to reach steady state in this instance. A sequence of time steps was 
then selected and used cyclically to determine whether any increase in convergence 
rate could be achieved. For the particular test case and time step sequence 
considered, there was only a minor improvement over the convergence rate for the 
optimum single time step. However, as shown in Ref. 31 for LaPlace's equation, 
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the improvement in convergence rate brought about by parameter sequences is 
greatly enhanced when the spatial mesh is refined. Since the present tests were 
run with a very coarse mesh (to minimize computing costs), the tests are incon
clusive with regard to the convergence rate of fine mesh calculations, which are 
of considerable practical importance. Finally, it is noted that the optimum time 
step corresponded to NCFL of about 100. 
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APPLICATION TO TURBULENT FLOW IN A STRAIGHT DUCT 

Background 

Since many practical flows at high Reynolds number are turbulent, it is 
desirable to have the capability to treat various turbulence models within the 
present numerical framework. Consequently, some test calculations were made for 
turbulent flow in the same rectangular duct geometry used in the previous laminar 
calculations, as a means for exploring the applicability of the present method to 
the computation of turbulent flows. The straight duct geometry is convenient for 
such an exploratory study, not only because of its relative simplicity, but also 
because there are some previous experimental and numerical results (e.g., Ahmed & 
Brundrett, Ref. 32; Launder & Ying, Ref. 33) available for comparison. For the 
present calculations, a relatively simple turbulence model, consisting of an eddy 
viscosity formulation and specified mixing length is employed. The shortcomings of 
this approach (e.g., the difficulty is selecting a suitable mixing length distribution 
in advance) are well known, and a number of more advanced turbulence models are 
currently being developed( cf. Launder & Spalding, Ref. 34) wherein various turbu~ 
lence o.uantities are determined as the (numerical) solution of one or more 
"turbulence equations". A number of these more advanced turbulence models employ 
a turbulent viscosity as a means of relating the turbulent stresses to the mean 
flow, however, and the present computational problem is therefore similar in 
many respects to that which would occur with one of the more advanced turbulence 
models. Thus, alternative and less restrictive turbulence models can be incorpo
rated into the present computational framework in a future study. 

Turbulence Model 

To account for turbulent transport processes, the governing equations are 
time-averaged in the usual manner for turbulent flows (e.g., Hinze, Ref. 35). The 
dependent variables are represented as the sum of a time-averaged quantity denoted 
by an overbar (-) and an instantaneous fluctuating quantity denoted by a prime ('). 
This process of averaging produces turbulent correlations which are conventionally 
termed Reynolds stresses. 

The time averaging is performed over a period of time sufficiently long to 
remove the random turbulent fluctuations, but not so long as to remove the time 
dependence of the mean flow. Since the present calculations are limited to subsonic 
flow, it is reasonable to neglect turbulent fluctuations in density. In addition, 
the assumption that the total enthalpy is a constant Eo was made, and thus, pressure 
is eliminated from the momentum equations by means of Eq. (8). As indicated previously, 
it is no longer necessary to solve the energy equation. After time averaging, the 
Navier-Stokes equations can be written in a form identical to Eqs. (3a-b), except 
that the force due to viscous stress F now includes both laminar and turbulent stresses. 
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In discussing the turbulence model, Oartesian tensor notation is employed, and thus, 
the subscripts i and j, previously used to denote a discretized variable, will be 
used to denote the components of velocity ui = u, v, w, and the space coordinat~s 
xi = x, y, z. The components Fi of the force due to viscous stress can thus be 
written as 

where the rate of strain tensor eij is given by 

The' Reynolds stress terms p ui u~ are related to the mean flow variables by means 
of the Boussinesq eddy viscositiconcept (cf. Hinze, Ref. 35), from which 

where ~T is the eddy or turbulent viscosity and eij is the mean flow rate of strain 
tensor. With the further assumption that laminar viscosity fluctuations are 
negligible, Eq. (30) becomes 

It remains to relate the eddy viscosity ~T to the mean flow variables. 
is accomplished by means of a mixing length hypothesis of the form 

This 

One possibility for specifying the mixing length t is provided by the following 
empirical one~parameter family developed by McDonald and Camarata (Ref. 35) on the 
basis of experimental evidence for two-dimensional turbulent boundary layers: 

rhere 0b is the local boundary layer thickness, ~ is the von Karman constant, 
y is the distance from the wall, and :tJ s is a sublayer damping factor defined by 
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where P is the normal probability fUnction, and 

1\( T' )1/2 P 
y. = Y P }i: 

-+ Here T is the local shear stress, y = 23 and cr+ ~ 8. 

Although the mixing length profile (35) of Mcbonald and Camarata (Ref. 35) was 
developed for two-dimensional boundary layers, it can be adapted for use in a 
rectangular duct by assuming, for example, that ~ is the distance to the nearest 
wall. In a fUlly developed duct flow 0b may be taken as the duct half-width, 
while in the developing region an approximate average value of 0b could be calculated 
from the solution as it evolves in time. It remains to specify the parameter 
(~oo/Ob). For two-dimensional equilibrium turbulent boundary layers, ~m/Ob has a value 
near 0.09 (McDonald & Camarata, Ref. 35); for fully developed pipe and channel flows 
~m/Ob is known to be approximately 0.14 (cf. Schlichting, Ref. 37). The use of 
~m/Ob = 0.14 in Eq. (35) provides a close approximation to the mixing length distri
bution for a pipe as given by Schlichting (Ref. 37). Within the framework of the 
proposed mixing length model, Eq. (36), an empirical formula is required for the 
variation of ~oo/Ob from 0.09 in the boundary layer region near the duct inlet to 
0.14 in the fully developed region of the duct flow. 

Sufficient information has been given to apply the foregoing turbulence model 
to flow in a square duct. One physical shortcoming of the model, however, is that 
it is based upon an isotropic turbulent viscosity, and it is known (cf. Launder & 
Ying, Ref. 33) that models of this type do not predict the experimentally observed 
secondary flows generated by the turbulence. The problem of steady fully-developed 
turbulent flow in a duct of square cross section was considered by Launder and 
Ying (Ref. 33), who modeled the Reynolds stress terms which induce the secondary 
motion. Brundrett and Baines (Ref. 38) also showed that transverse gradients in the 
Reynolds stresses result in the observed secondary-flow velocities in the cross
sectional plane. 

Launder and Ying (Ref. 33) modeled the Reynolds stress terms (u'2 - v· t
.2 ) and ---u t v' which appear in the vorticity equation. Here, the Launder - Ying approach 

is adapted for use with the present velocity-pressure formulation of the Navie~ 
Stokes equations and this requires specification of the stresses u '2, v'2 and u' v'. 
To simplify the analysis, it was assumed that the approximations employed by Launder 
and Ying in modeling the Reynolds stresses for fully-developed flow are also suffic
iently accurate in the developing region of a duct flow. The high Reynolds number 
analysis of Launder and Ying was based on the Reynolds stress transport equations, 
and neglected the co~tion and diffusion terms, and the generation terms in the 
equations for u,2 , v'.2 and u t v'. In addition, since the dissipation of turbulence 
energy at high Reynolds numbers is isotropic, the approxj~ation 

au.' au" 
2 __ '_J=2~€ 

v aXk aXk '"3 Dij 
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was introduced, where e is the turbulence energy dissipation rate. With the above 
approximations the transport equations for u·'2, 'v'2 and u' v' reduce to 

and 

P' ::iv' _ I --~
u -E+V'W'~ 

P 0)(.2- "3 oX3 

(39a) 

(39b) 

(39c) 

Following Launder and Ying, the approximations for the correlations between 
pressure and velocity-gradient fluctuations are modeled using the form suggested by 
Hanjalic and Launder (Ref. 39), which vTaS based on earlier work by Rotta (Ref. 40). 
There results 

and 

p' au' 
Pox, 

p' 
P 

ov' --= a X2 

(40a) 

(l~Ob ) 

(40c) 

where k is the turbulence kinetic energy, P 
kinetj.c energy, cl and c2 are constants, an~ 
Pk is given by (Ref. 33), 

is the rate of production of tUl~bulence 
S = (6 c2-2)/11. The production term 

-, -, oW -'-I oW 
Pk = - uw - - v W -ox, OX2 

and for nearly equilibrium turbulence, one may assume that e is equal to Pko 
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The use of Eqs. (39-41) results in the following expressions for u t2 , v'2 
and u' vi : 

where the constants are 

The remaining Reynolds stress terms u ' Wi and Vi Wi are modeled using 
Eq. (32 ), L e • , 

(4'2a) 

(42b) 

(42c) 

(43a) 

(43b) 

(44) 

The efflective turbulence kinematic viscosity vT = ~T/P for the Reynolds stress 
model is obtained from the Prandtl-Kolmogorov formula: 

1/ = C k'/2 n 
T II xW 

and following Launder and Ying, € is approximated by 

(46) 

where ~ is a turbulence length scale. Furthermore, from Eq. (41), 

(47) 

and thus, Eqs~ (42) reduce to 

(48a) 
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u'v' = -

The length scale tw must be specified in the above model. 
(Ref~ 33) used the form suggested by Buleev (Ref. 41). 

a1T 
-' = -' f sJsI;> £w 2 s 

o 

where the notation is explained in Fig. 12. 

(48b) 

(48c) 

Launder and Ying 

An interesting observation can be made about the Launder-Ying turbulence model 
for the case of equilibrium turbulence, i.e., € = Pke It is easily seen that 
Eqs. (45-47) reduce to the form of Eq. (34), i.e., 

[ a 2 a 2] 1/2 
11 =£ 2 (--'t!'.) + (~) 

T maXI aX2 . (50) 

with the implied mixing length, tm, given by 

£m= ,( £w (51) 

As stated by Launder and Ying (Ref. 33), the Buleev length scale tw, Eq. (49), 
provides a norrrigorous but plausible method of accounting for the influence of adjacent 
walls in the duct. On further examination, the Buleev length scale is found to have 
the property that the mixing length distribution from Eq. (51) along a plane of 
symmetry is nearly the same as that for a fully developed pipe flow (cf, Refo 37), 
and significantly, it yields tm ~ ,(y near the wall and a value of 0~14 at the 
center of the duct. 

The present adaptation of the Launder-Ying mOdel, Eqs. (48-49), provides the 
correlations between transverse velocity component fluctuations required in the 
transverse momentum ~quation force terms, Eq. (30). In the xl - momentum equation, 

(52a) 
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and in the x2 momentum equation 

a ( -, ') a (-;2") a ( -, ') a ( -
F2 = - aXI puv - aX2 pv - aX 3 pv W + aXj 2fLe2j) (52b) 

In these expressions the first two terms are obtained from Eqs. (48) and the 
third term is obtained from Eq. (44), with the turbulent viscosity ~T specified 
by Eq. (34) ~ 

Special consideration must be given to calculation of turbulent flow in the 
vicinity of walls in view of the large flow gradients which occur there. Since the 
expense of simply increasing the number of grid points near a wall may be consider
able, an analytical wall function formulation has been employed in the present studyo 
A set of three universal velocity profiles (cf, Walz, Ref. 42) is employed in the 
wall region, corresponding to the laminar sub layer (y+ ~4), a transition region 
(4 < y+ < 26), and the logarithmic law-of -the-wall region (y+ ~ 26): 

(53a) 

(53b) 

u+ = c1Iny++ C2 for y+~ 26 (53c) 

where 

+ 1\ / * u = u U (54) 

1\ 
y+ = y(pu*Re) (55) 

and 

u * = (T W / p)'/2 (56 ) 
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" In Eq. (54) u denotes the total velocity cOlY!Ponent parallel to the wall, u* is the 
nondimensional friction velocity, Eq. (56), and Tw is the wall shear stress. The 
constants cl, c2' and a in Eqs~ (53) were taken as 205, 5.1, and O~3, respectively. 
The f'inite dif'f'erence f'orm of' the velocity gradient at the grid point adjacent to 
the wall point is specif'ied consistent with the appropriate universal prof'ile given 
above. In the present f'ormulation the assUlY!Ption of' constant shear stress in the 
immediate vicinity of' the wall is utilized. The specif'ication of' the velocity 
gradient at the grid point adjacent to the wall (where the velocity is known) is 
equivalent to imposing a "slip" velocity at the wall itself'. Hence, f'low resolution 
in the region very near the wall is sacrif'iced to attain accuracy in the central 
region of the flow f'ield~ However, if accurate calculations in the wall region are 
required at a later date, ref'inements to the wall f'unction approach may be implemented 
easily in the present computational procedure. 

In the incorporation of the turbUlence model 'into the numerical solution procedure, 
it is, of course, recognized that the turbulent viscosity I-LT ultimately depends on 
the mean flow variables~ It is impractical to attempt to linearize I-LT rigorously, 
however, as the partial derivatives of' I-LT with respect to the mean f'low variables 
are not easily obtained. Consequently, f'or the present calculations, I-LT was eval
uated at the n time level af'ter each time step and lagged during the implicit compu
tation procedure, i.e., I-LT was treated numerically as a given f'unction of the space 
coordinates. 
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Computed Solutions 

The flow conditions present in the measurements of Ahmed and Brundrett (Ref. 
32) of the mean flow properties in the developing region of a s~uare duct were 
adopted as a suitable test case. The experimental configuration (Ref. 32) consisted 
of a 3.625 in. s~uare duct with a length of 18 feet. Ahmed and Brundrett presented 
isovels (axial velocity contours in the cross-sectional~lane) at a Reynolds number, 
R~ = PrUrD.MI~r based on the modified length scale ~ ~DH (where DH = 3.625 in.), 
of approximately 1.065 x 105. Experimental static pressure distributions (Fig. 3a 
of Ref. 32) in the axial direction were given at Reynolds numbers, R~, of 
0.59 x 105, 1.076 x 105, 1.41 x 105, and 1.58 x 105 for a duct with a gradual entrance. 
The static pressure distribution for ReM = 1.076 x 105 from Ref. 32 provides the 
pressure drop re~uired in the calculation procedure for a specified section of the 
duct length. 

As a preliminary step prior to consideration of the developing flow, the fully 
developed flow near the end of the duct was computed to assess the various compo
nents of the foregoing turbulence model. The eddy viscosity turbulence model, E~s. 
(33-34), along with the mixing length from either E~. (35) or (51), was first 
employed without the Launder-Ying modifications (E~. 42) to obtain predictions 
without a turbulence-driven secondary flow. Unfortunately, at the time of the 
present writing, a satisfactory solution could not be obtained with the modified 
Launder-Ying secondary flow 'model employed in the present numerical procedure, and 
thus none of the solutions presented contain a turbulence-driven secondary flow. 
The cause of the difficulty with the secondary flow turbulence model is presently 
under investigation and is possibly in the treatment of boundary conditions or the 
assumption of a ~uasisteady turbulence model, which results in an absence of time 
derivatives in the turbulence model. 

For the fully developed flow region, a duct section of length 5DH was chosen 
and the pressure drop was taken as 10.21 Fa (1.042 rom ~O). The boundary conditions 
appropriate for fully developed flow are a specified constant static pressure at the 
upstream and downstream boundaries. The static pressure condition is satisfied by 
linearizing E~. (8) about t n using the same procedure that was employed for the 
governing e~uations. In place of the no-slip conditions on the duct walls, the 
wall function analysis discussed previously was used for velocity components parallel 
to the wall. otherwise, the boundary conditions were identical to those employed 
in the laminar calculations. Symmetry conditions were employed at the planes of 
symmetry, passing through the duct centerline, and the solution was computed for 
one ~uadrant of the duct. 

Solutions were computed for a duct of length 5DH using a 10 x 10 x 6 grid 
with the Roberts transformation (Ref. 28) applied in the transverse coordinate direc
tions to improve accuracy near the walls. It should be noted that reducing the 
Roberts parameter a from 0·5 to 0.1 had a negligible effect on the computed mass 
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flow rate and overall skin friction. Also, integral momentum conservation checks 
performed using the calculated wall shear stress and axial pressure gradient showed 
that the calculated axial momentum flux was conserved to within 2.5 percent. 

Axial velocity contours calculated with the mixing length Eq. (51) are shown 
in Fig. 13 along with the measurements of Ahmed and Brundrett (Ref. 32) which were 
taken at the location Z/DH = 26.2 at a Reynolds number ReH = 0.881 x 105. The 
comparison clearly shows the distortion of the measured isovels due to convection 
of high momentum fluid from the duct center toward the corners, which is presumably 
due to the existence of secondary flows in the duct (Launder & Ying, Ref. 32) not 
modeled in the calculations. A comparison of calculated and measured values of skin 
friction coefficient shows some interesting features. The Preston tube measurements 
of Ahmed and Brundrett (Ref. 32) and the skin friction coefficient deduced from the 
measured pressure gradient in the fully developed region are shown in Fig. 14, along 
with the calculations of Launder and Yin~ (Ref. 33). Here, the skin friction 
coefficient is defined as cf = rw/(tPrur ), where TW is the average wall shear 
stress, and the Reynolds number is given by ReH = PrUrDH/~' The present results 
shown in Fig. 14 were obtained using the mixing length models described by Eqs. (35) 
and (51) at two different Reynolds numbers (corresponding to two specified pressure 
drops). The difference between the results using mixing length Eq. (35) and Eq. 
(51) is significant, and may be attributed to the fact that the Buleevmixing length, 
Eq. (51), is considerably smaller than the present adaptation of the McDonald
Camarata length, Eq. (35), in the corner regions of the duct. These results illus
trate the sensitivity of the predictions to the choice of length scale, and perhaps 
reflect the shortcomings of a turbulence model which requires ~ priori specification 
of a length scale for a noncircular duct flow. 
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DUCT GEOMETRY AND COORDINATE SYSTEM 
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FIG. 2 

TRANSIENT BEHAVIOR OF VELOCITY TIME DERIVATIVE AT DOWNSTREAM CENTERLINE 
FOR DIFFERENT TIME STEPS 
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FIG. 3 

TRANSIENT BEHAVIOR OF VELOCITY TIME DERIVATIVE AT DOWNSTREAM CENTERLINE 
FOR DIFFERENT TIME STEPS 
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FIG. 5 

TRANSIENT BEHAVIOR OF VELOCITY TIME DERIVATIVE AT DOWNSTREAM CENTERLINE 

FOR DIFFERENT TIME STEPS 
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FIG. 6 

EFFECT OF MESH SIZE ON COMPUTED AXIAL VELOCITY PROFILES AT x/x1 = 0.5 

M = 0.44, Re = 60 
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FIG. 7 

EFFECT OF AXIAL MESH SIZE ON COMPUTED CENTERLINE VELOCITY AND PRESSURE 

M = 0.44, Re = 60 
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SELECTED STREAMLINES FOR DUCT FLOW WITH MOVING WALLS 
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FIG. 9 

COMPUTED AXIAL VELOCITY PROFILES AT x/x, = 0.5 

M = 0.3, Re = 600 
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COMPARISON OF COMPUTED AND MEASURED AXIAL PRESSURE DROP 
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FIG. 12 

NOTATION FOR CALCULATING BULEEV LENGTH SCALE 
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FIG. 13 

AXIAL VELOCITY CONTOURS FOR FULLY DEVELOPED TURBULENT FLOW IN A SQUARE DUCT 

Ur = 14.63 M/SEC 
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APPENDIX 

Terms in the governing equation (3) are arranged for application of the 
numerical method as follows: 

HT = (P, pU, PV,PW, PT) 

-O(pU)IOX 

-O(pU 2 +pTIYM2)/OX +o2(u/Re)lox2 

- o(puv)/ox + o2(v/Re )Iox 2 

-o(puw)lox + o2(w/Re)lox2 

-O(puT)lox + (1- Y)pTou/ox + 02(YT/Repr)lox2 

A-I 

(A-I) 

(A-2) 

(A-3) 
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- o(pw) loz (A-4) 

ST: (0 ...l- O('7'U) 
1 3Re AX 

I a (\loU) 
1 3 Re ay 

I a(\l·u) lY(Y-I)M2 <j>/Re) (A-5) 
1 3R.e az 
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